Step of Proof: assert_of_eq_int
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
assert
of
eq
int
:
x
,
y
:
. (
(
x
=
y
))
(
x
=
y
)
latex
by ((GenUnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
x
:
C1:
2.
y
:
C1:
3.
(
x
=
y
)
C1:
x
=
y
C
2
:
C2:
1.
x
:
C2:
2.
y
:
C2:
3.
x
=
y
C2:
(
x
=
y
)
C
.
Definitions
,
t
T
,
P
Q
,
P
Q
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
eq
int
wf
,
assert
wf
origin